Aziridination of alkenes using 2-substituted-3-acetoxyamino-quinazolin- $\mathbf{4 (3 H)}$-ones: changes in transition state geometry resulting from addition of trifluoroacetic acid or by an electronwithdrawing 2 -substituent

Robert S. Atkinson * and Sabri Ulukanli
Department of Chemistry, The University, Leicester, UK LE1 7RH
Received (in Cambridge) 14th December 1998, Accepted 4th February 1999

The effects of TFA on the competitive reactions of 3-acetoxyaminoquinazolinones $\mathbf{2}$ and $\mathbf{1 0}$ with methyl acrylate and with tert-butyl acrylate are interpreted as supporting a change in transition state geometry from one where (Q) C=O/ (ester) $\mathrm{C}=O$ overlap 7b is replaced by $(\mathrm{Q}) C=\mathrm{N}^{+} \mathrm{H} /($ ester $) \mathrm{C}=O$ overlap $7 \mathrm{c}(\mathrm{Q}=$ quinazolinone). Aziridinations of methyl or tert-butyl acrylate using 2-trifluoromethyl-substituted 3-acetoxyaminoquinazolinones $\mathbf{2 0}$ and $\mathbf{2 1}$ take place with (Q) $C=\mathrm{N} /($ ester $) \mathrm{C}=O$ overlap 22 even in the absence of TFA.

3-Acetoxyaminoquinazolinones e.g. $2\left(\mathrm{Q}^{1} \mathrm{NHOAc}\right)$, prepared as shown in Scheme 1, are aziridinating agents for alkenes. ${ }^{1}$

Scheme 1 Reagents: i, $\mathrm{Pb}(\mathrm{OAc})_{4} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$; ii, hex-1-ene; iii, hex-1-ene, TFA (3.4 equiv.).

The presence of trifluoroacetic acid (TFA) in these aziridinations has a profound effect both upon the yield of aziridine and upon the stereoselectivity of the reaction. Thus, for example, hex-1-ene is a relatively unreactive alkene towards Q^{1} NHOAc 2 and the yield of aziridine $\mathbf{3}$ is less than 15% even in the presence of excess of alkene: the major product of the reaction is quinazolin- $4(3 \mathrm{H})$-one 4 . In the presence of TFA (3 mol equiv.) the combined yield of aziridine $\mathbf{3}$ and its ring-opened product 5 rises to 75%. ${ }^{2}$

The diastereomer ratio in reagent-controlled aziridination of a, β-unsaturated esters $e . g$. for methyl acrylate with $\mathrm{Q}^{2} \mathrm{NHOAc}$ $\mathbf{6}$ is increased from 2.4:1 in the absence of TFA to $1: 8.7$ in its presence i.e. the preferred sense of diastereoselectivity is inverted (Scheme 2). ${ }^{3}$

Scheme 2
These 3-acetoxyaminoquinazolinones $\mathbf{2}$ and $\mathbf{6}$ are nitrogen equivalents of peroxyacids and the mechanisms of their reac-
tions with alkenes bearing electron-donating substituents to form the corresponding three-membered rings are presumably similar. ${ }^{4}$ However, unlike peroxyacids, compounds $\mathbf{2}$ and $\mathbf{6}$ react with e.g. α, β-unsaturated esters to give the corresponding aziridines in good yields (see above). We have suggested a mechanism for aziridination in this latter case which involves (a) Michael addition by the acetoxyamino nitrogen to the β-position of the α, β-unsaturated ester followed by (b) $\mathrm{S}_{\mathrm{N}} 2$-type substitution of the acetoxy group on the exocyclic nitrogen by the developing negative charge at C_{a} (see 7b Scheme 3). Activation of the

α, β-unsaturated ester towards Michael addition is brought about by overlap of the ester carbonyl oxygen with the quinazolinone carbonyl carbon: such an overlap requires the s-cis conformation of the ester (see 7b). ${ }^{5}$

To account for the increase and the change in the preferred sense of stereoselectivity in Scheme 2 brought about by TFA, we proposed ${ }^{3}$ that this acid protonated the $(\mathrm{Q}) \mathrm{N}-1$ and changed the transition state geometry from one in which $(\mathrm{Q}) \mathrm{C}=\mathrm{O} /$ (ester) $\mathrm{C}=O$ overlap $7 \mathbf{b}$ is replaced by $(\mathrm{Q}) C=\mathrm{N} /($ ester $) \mathrm{C}=O$ overlap 7c except that at the time the aziridinating species was thought to be the N-nitrene. Because a minimum of 3 equiv. of TFA must be used for the effect produced in Scheme 2, it is possible that protonation of the $(\mathrm{Q}) \mathrm{C}=\mathrm{O}$ oxygen also occurs in the aziridinating species in Scheme 3.

In this paper we present evidence which supports this proposed change in transition state geometry from 7b to 7c not only in the presence of TFA but also when the quinazolinone 2 -substituent is strongly electron-withdrawing, e.g. a trifluoromethyl group.

3-Amino-2-ethyl-5-methylquinazolin-4(3H)-one 9 is prepared from the commercially available 6 -methylanthranilic acid 8 by the route shown in Scheme 4.
Competitive aziridination of methyl acrylate (1 equiv.) by a mixture of 3-acetoxyaminoquinazolinones 2 and 10, prepared

Scheme 4 Reagents: i, $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$; ii, $\mathrm{Ac}_{2} \mathrm{O}$; iii, $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{EtOH}$.
in situ by acetoxylation with lead tetraacetate (LTA) (2.1 mol equiv.) of the corresponding 3 -aminoquinazolinones $\mathbf{1}$ (1 equiv.) and $\mathbf{9}$ (1 equiv.) gave a 3:2 ratio of aziridines $\mathbf{1 1}$ and $\mathbf{1 2}$ (Scheme 5).

Scheme 5 Reagents: i, LTA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; ii, methyl acrylate; iii, tert-butyl acrylate.

This ratio of aziridines $\mathbf{1 1 : 1 2}$ was measured directly from the NMR spectrum of the crude reaction product by integration of signals at $\delta 3.58$ and 3.41 from the aziridine ring protons adjacent to the ester groups in $\mathbf{1 1}$ and $\mathbf{1 2}$ respectively (from comparison with the authentic samples). In contrast, an analogous competitive aziridination of tert-butyl acrylate with 3-acetoxyaminoquinazolinones 2 and 10 gave only aziridine 13: none of the aziridine 14 was detectable when the NMR spectrum of the crude reaction mixture was compared with that from a sample of authentic aziridine 14. The 3acetoxyaminoquinazolinone $\mathbf{1 0}$ is converted to quinazolin$4(3 H)$-one 15 which was isolated from the reaction mixture in 40% yield.

However, when these competitive reactions of compounds 2 and $\mathbf{1 0}$ with either methyl acrylate or with tert-butyl acrylate were carried out in the presence of TFA (3 equiv.) a $1: 1$ ratio of aziridines 11:12 and 13:14 was obtained in each case.

These changes in aziridine ratios are in agreement with those predicted from a change in mechanism from $7 \mathbf{b}$ to $7 \mathbf{c}$ (Scheme 3) and correspond to a change from $\operatorname{endo}(\mathrm{Q}) C=\mathrm{O} /($ ester $) \mathrm{C}=O$ overlap 16 to endo $(\mathrm{Q}) C=\mathrm{N} /($ ester $) \mathrm{C}=O$ overlap 17 (Scheme 6) mediated by TFA. Thus even with methyl acrylate there is a small steric interaction between the methyl group of the ester and the 5-methyl group which favours formation of aziridine 11. The augmented interaction of the 5-methyl group with the tert-butyl group is responsible for the absence of any aziridine $\mathbf{1 4}$ from the reaction of tert-butyl acrylate with compound $\mathbf{1 0}$.

However, in the presence of TFA, the 5-methyl substituent is without effect in competitive aziridination of both methyl acrylate and tert-butyl acrylate because endo interaction of the ester carbonyl oxygen and the quinazolinone imine carbon

16 without TFA

17 with TFA
Scheme 6
(Q) $C=\mathrm{N}$ (as in 17) removes the methyl or tert-butyl group from the vicinity of this 5-methyl substituent.

We have also prepared the 3 -amino-5-methyl-2-trifluoromethylquinazolinone 19 (Scheme 7) by a route analogous to

Scheme 7 Reagents: i, $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$; ii, $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{EtOH}$; iii, LTA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; iv, methyl acrylate; v, tert-butyl acrylate.
that in Scheme 4. Its 3-acetoxyamino derivative 21 shows a similar stability at room temperature to that of the previously prepared $5-\mathrm{H}$ analogue $20 .{ }^{6}$ Competitive aziridination of methyl acrylate (1 equiv.) with a mixture of the compounds $\mathbf{2 0}$ (1 equiv.) and 21 (1 equiv.) gave a $1: 1$ ratio of the corresponding aziridines 23 and 24 (Scheme 7) from examination of the NMR spectrum of the crude reaction mixture and by comparison with the spectra of authentic samples.

The corresponding competitive reaction of tert-butyl acrylate with $\mathrm{Q}^{4} \mathrm{NHOAc} 20$ and $\mathrm{Q}^{5} \mathrm{NHOAc} 21$ likewise gave a $1: 1$ ratio of aziridines $\mathbf{2 5}$ and 26. It appears, therefore, that even in the absence of TFA, the presence of a trifluoromethyl group as the 2-substituent on the quinazolinone favours an aziridination transition state 22 having (Q$) C=\mathrm{N} /($ ester $) \mathrm{C}=O$ overlap as
illustrated in Scheme 7. The increase in electrophilicity at the (Q) $C=\mathrm{N}$ carbon brought about either by protonation of (Q)N-1 or by trifluoromethyl substitution at (Q)C-2 is most likely responsible for the change in transition state geometry.

In an attempt to discover just how electron-withdrawing this quinazolinone 2 -substituent needs to be for a transition state resembling 22 to be favoured we synthesised the 2 -(1,1-dichloro)ethyl-substituted 3 -amino-5-methylquinazolinone 28 (Scheme 8) from 6 -methylanthranilic acid $\mathbf{8}$ by a route analo-

Scheme 8 Reagents: i, $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{COCl}$, pyr; ii, $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{EtOH}$; iii, heat; iv, LTA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; v, methyl acrylate or tert-butyl acrylate.
gous to that in Scheme 4. Competitive reactions of the corresponding 3-acetoxyamino derivative 30 and the known $5-\mathrm{H}$ analogue $\mathbf{2 9}$ for methyl acrylate gave aziridines $\mathbf{3 2}$ and $\mathbf{3 1}$ in a 1:1.1 ratio from integration of the respective aziridine H-3 proton signals in the NMR spectrum of the crude reaction product. However, competitive reaction of $Q^{6} \mathrm{NHOAc} 29$ and Q^{7} NHOAc 30 with tert-butyl acrylate gave aziridines $\mathbf{3 3}$ and $\mathbf{3 4}$ in a 3:2 ratio respectively from comparison of signals from the corresponding aziridine ring protons.

Preferential aziridination of tert-butyl acrylate by $\mathrm{Q}^{6} \mathrm{NHOAc}^{2}$ 29 may be the result of the reduced electrophilicity and greater bulk of the dichloroethyl group by comparison with the trifluoromethyl group. Thus, whereas $\mathrm{Q}^{7} \mathrm{NHOAc}^{30}$ reacts via a transition state 35 analogous to 22, competitive reaction by Q^{6} NHOAc 29 occurs by both transition states 36 and 37 leading to more of aziridine $\mathbf{3 3}$ than $\mathbf{3 4}$ (Scheme 9). If this interpretation is correct, the aziridination of e.g. methyl acrylate via a transition state resembling 22 may be possible with a chiral 2 -substituent on the quinazolinone less electron-withdrawing, if also less bulky, than the 1,1 -dichloroethyl group. Diastereoselectivity in aziridination via the two competing transition states represented by $22\left(\mathrm{CF}_{3}\right.$ replaced by chiral group) would be expected to be greater than via the two transition states represented by $\mathbf{7 b}$ (R the same chiral group).
The effect of addition of TFA on aziridination of methyl acrylate with Q 2 NHOAc 6 (Scheme 2) ${ }^{3}$ can be accounted for by a change in transition state geometry from 38 to 39 (Scheme 10): the acetoxy group on the exocyclic nitrogen is syn to the chiral centre in 38 and anti in 39 and, we believe, plays an important role in determining the preferred sense of diastereoselectivity in the reaction with or without the presence of TFA.

Thus the relative configuration of the major aziridine diastereoisomer formed in the absence of TFA was previously assigned as 40 by analogy with the relative configuration of the preferred diastereoisomer from aziridination of methyl crotonate with $\mathrm{Q}^{2} \mathrm{NHOAc} 6$. The sites occupied by the methyl and tert-butyl in transition state $\mathbf{3 8}$ presumably reflect the unfavourable interaction between the tert-butyl and N -acetoxy group which is present in the transition state $\mathbf{4 2}$ for formation of the minor aziridine diastereoisomer 41. There is a change in the preferred sense of diastereoselectivity in the TFA-catalysed reaction giving aziridine 41 because the opposite face of the α, β-unsaturated ester is attacked in transition state 39 by comparison with 38 with the same configuration at the (Q)C-2

35

Scheme 9

39

42
Scheme 10
chiral centre in both cases. The methyl group can be better accommodated "inside" in transition state 39 to avoid unfavourable interaction with the ester OMe and because the N-acetoxy group is now anti to the chiral centre.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker ARX 250 NMR spectrometer. Chemical shifts are reported as δ in units of parts per million (ppm) relative to tetramethylsilane ($\delta 0.00$ singlet) in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right) ; J$ values are given in Hz . Melting points were obtained on a Kofler hot stage and are uncorrected. Infrared spectra (IR) of all compounds were recorded in dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ using a Perkin-Elmer

PE 298 spectrometer. Mass spectra were recorded on a Kratos Concept 1H Magnetic Sector Mass spectrometer and all spectra were determined in units of mass relative to charge $(\mathrm{m} / \mathrm{z})$ with electron impact (EI) ionisation or fast atomic bombardment (FAB); only peaks $\geq 20 \%$ of the base peak are given. Dichloromethane was distilled from CaH_{2} and stored over $4 \AA$ molecular sieves. Lead tetraacetate was freed from acetic acid under reduced pressure prior to use. All other reactants were reagent grade and were used as received.

General procedure (1) for the aziridination of α, β-unsaturated esters

3-Aminoquinazolinone (1 equiv.) and acetic acid-free lead tetraacetate (LTA) (1.1 mol equiv.) were added alternately and continuously in very small portions over 15 min to a vigorously stirred solution of dry dichloromethane $\left(1 \mathrm{~cm}^{3} / 100 \mathrm{mg}\right.$ of 3 -aminoquinazolinone) cooled with a dry ice-acetone bath held at -20 to $-25^{\circ} \mathrm{C}$. The mixture was then stirred for a further 5 min before dropwise addition of the α, β-unsaturated ester (1.5-3.5 equiv.) as a solution in dichloromethane $\left(1 \mathrm{~cm}^{3} / 500\right.$ mg) over 2 min and the temperature of the solution was then allowed to rise to ambient over $20-25 \mathrm{~min}$ with stirring throughout. Lead diacetate was separated, dichloromethane $\left(15 \mathrm{~cm}^{3}\right)$ added, the organic solution washed successively with saturated aqueous sodium hydrogen carbonate and water, dried with magnesium sulfate and the solvent removed by evaporation under reduced pressure.

General procedure (2) for the aziridination of α, β-unsaturated esters in the presence of TFA

A solution of 3-acetoxyaminoquinazolinone at $-20^{\circ} \mathrm{C}$ was prepared as described above, separated from lead diacetate at this temperature (on a small scale a Pasteur pipette can be used) and the cold solution added dropwise over 2 min to a stirred solution of the alkene (1.5-3.5 equiv.) in dichloromethane (1 $\mathrm{cm}^{3} / 50 \mathrm{mg}$) containing TFA (3 equiv.) and held at $-20^{\circ} \mathrm{C}$ (bath temp.). The temperature of the stirred solution was allowed to rise to room temperature over 20-25 mins. After addition of dichloromethane ($15 \mathrm{~cm}^{3}$), the solution was washed successively with aqueous saturated sodium hydrogen carbonate and water, dried with magnesium sulfate and the solvent removed by evaporation under reduced pressure.

Preparation of 3-amino-2-ethyl-5-methylquinazolin-4(3H)-one 9

To 6-methylanthranilic acid 8 (Aldrich) ($12.5 \mathrm{~g}, 82 \mathrm{mmol}$) was added propionic anhydride $(10.7 \mathrm{~g}, 82 \mathrm{mmol})$ and the mixture was heated at $100^{\circ} \mathrm{C}$ with stirring for 1 h . After cooling the mixture was poured into water, dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ was added and the organic layer separated, dried and concentrated under reduced pressure to give an oil which was then cyclised by heating under reflux in acetic anhydride ($35 \mathrm{~cm}^{3}$) for 2.5 h . The bulk of the acetic anhydride was removed by distillation under reduced pressure (Kugelrohr) using a water pump. 2-Ethyl-5-methyl-4H-3,1-benz[d]oxazin-4-one was obtained as a colourless solid by crystallisation of the residue from light petroleum ($13.4 \mathrm{~g}, 86 \%$) mp 84-85 ${ }^{\circ} \mathrm{C}$ (Found: M^{+}189.0789. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires $M 189.0789$); $\delta_{\mathrm{H}} 1.54\left(\mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.87(\mathrm{q}, J 7.5$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.98 (s, 5-CH3), 7.45 (d, J 7.2, H-6), 7.58 (dd, J 7.5 and $0.6, \mathrm{H}-8$) and $7.80(\mathrm{dd}, J \sim 7.0$ and $7.5, \mathrm{H}-7) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 2950w, 1750s, 1655s and $1600 \mathrm{~s} ; \mathrm{m} / \mathrm{z}(\%) 189\left(\mathrm{M}^{+}, 71\right), 160$ (100) and 104 (22). 2-Ethyl-5-methyl-4H-3,1-benz[d] oxazinone (6.7 g , $35 \mathrm{mmol})$ and hydrazine hydrate ($12.3 \mathrm{~g}, 246 \mathrm{mmol}$) were heated under reflux for 6 h with ethanol $\left(100 \mathrm{~cm}^{3}\right)$ as solvent under nitrogen. After cooling, the bulk of the ethanol was removed under reduced pressure and the residue dissolved in dichloromethane ($100 \mathrm{~cm}^{3}$) which was then washed with water (100 cm^{3}), dried and concentrated to give 3-amino-2-ethyl-5-methylquinazolin-4(3H)-one 9 as colourless crystals (4.36 g ,
61%) mp 142-144 ${ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 65.25; H, 6.45; $\mathrm{N}, 20.65 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires C, 65.0; H, 6.45; $\mathrm{N}, 20.65 \%$); $\delta_{\mathrm{H}} 1.29\left(\mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.83$ [s, 5-CH $\left.(\mathrm{Q})\right], 2.96(\mathrm{q}, J 7.2$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.72\left(\mathrm{~s}, \mathrm{NH}_{2}\right)$ and $7.55-7.11[\mathrm{~m}, \mathrm{H}-6, \mathrm{H}-7$ and H-8 (Q)]; $v_{\text {max }} / \mathrm{cm}^{-1} 3320 \mathrm{w}, 2965 \mathrm{w}, 1665 \mathrm{~s}, 1595 \mathrm{~s}$ and $1570 \mathrm{~m} ; \mathrm{m} / z(\%)$ $204\left(\mathrm{MH}^{+}, 100\right), 154$ (58), 137 (29) and 136 (43).

Aziridination of methyl acrylate using $\mathbf{Q}^{1} \mathbf{N H O A c} 2$

The general procedure 1 was followed using $\mathbf{1}(0.1 \mathrm{~g}, 0.53$ mmol), LTA ($0.26 \mathrm{~g}, 0.58 \mathrm{mmol}$) and methyl acrylate (0.05 g , 0.63 mmol) in dichloromethane ($2 \mathrm{~cm}^{3}$). An NMR spectrum of the crude product showed that a mixture of aziridine $\mathbf{1 1}$ and quinazolin- $4(3 \mathrm{H})$-one $\mathbf{4}$ was present in a ratio 4.4:1 from the integration of signals at $\delta 8.15$ and 8.22 ppm respectively. The crude product crystallised on addition of ethanol to give aziridine 11 as a colourless solid ($0.1 \mathrm{~g}, 71 \%$) $\mathrm{mp} 116-118^{\circ} \mathrm{C}$ (from ethanol) (lit. $\left.{ }^{1} \mathrm{mp} 116-118^{\circ} \mathrm{C}\right) \delta_{\mathrm{H}} 1.42\left(\mathrm{t}, J 6.9, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.85$ (d, $J 5.0$, azir. H-3 trans to Q), $3.02\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 3.12 (d, $J 7.5$, azir. H-3 cis to Q), 3.58 (dd, $J 7.5$ and 5.0 azir. H-2), 3.80 (s, $\left.\mathrm{OCH}_{3}\right), 7.32-7.76[\mathrm{~m}, 6-\mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}(\mathrm{Q})]$ and $8.15[\mathrm{~d}, J 8.2,5-\mathrm{H}$ (Q)].

Aziridination of methyl acrylate using \mathbf{Q}^{3} NHOAc 10

The general procedure 1 was followed using $9(0.1 \mathrm{~g}, 0.49$ mmol), LTA ($0.24 \mathrm{~g}, 0.54 \mathrm{mmol}$), methyl acrylate (0.05 g , $0.59 \mathrm{mmol})$ and, in addition, $\operatorname{HMDS}(0.16 \mathrm{~g}, 0.98 \mathrm{mmol})^{7}$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ was added. An NMR spectrum of the crude product showed a mixture of aziridine $\mathbf{1 2}$ and quinazolin$4(3 \mathrm{H})$-one $\mathbf{1 5}$ present in a 3.5:1 ratio from the integration of signals at $\delta 3.50$ and 10.72 ppm respectively. The crude product crystallised on addition of ethanol to give aziridine $\mathbf{1 2}$ as a colourless solid ($0.11 \mathrm{~g}, 78 \%$) mp 132-134 ${ }^{\circ} \mathrm{C}$ (from ethanol) (Found: M^{+}287.126. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires M 287.126); $\delta_{\mathrm{H}} 1.40$ (t, J 7.2, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.81\left(\mathrm{~s}, 5-\mathrm{CH}_{3}\right), 2.92$ (dd, $J 5.0$ and 1, azir. $\mathrm{H}-3$ trans to Q$), 3.03\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and azir. $\mathrm{H}-3$ cis to Q), 3.41 (dd, $J 7.5$ and 5.0, azir. H-2), 3.85 (s, OCH_{3}), 7.13 [d, $J 7.2,6-\mathrm{H}$ (Q)] and $7.49[\mathrm{~m}, 7-\mathrm{H}$ and $8-\mathrm{H}(\mathrm{Q})] ; v_{\max } / \mathrm{cm}^{-1} 1750 \mathrm{~s}, 1675 \mathrm{~s}$ and $1600 \mathrm{~m} ; m / z(\%) 287\left(\mathrm{M}^{+}, 85\right), 145(100), 90(24)$ and $89(22)$.

Aziridination of tert-butyl acrylate using \mathbf{Q}^{1} NHOAc 2

General procedure 1 was followed using $1(0.1 \mathrm{~g}, 0.53 \mathrm{mmol})$, LTA ($0.26 \mathrm{~g}, 0.58 \mathrm{mmol}$) and tert-butyl acrylate $(0.1 \mathrm{~g}, 0.79$ $\mathrm{mmol})$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$. An NMR spectrum of the crude product showed a mixture of aziridine $\mathbf{1 3}$ and its corresponding quinazolin- $4(3 \mathrm{H})$-one $\mathbf{4}$ were present in a ratio 5.3:1 from integration of signals at $\delta 8.15$ and 8.22 ppm respectively. The crude product crystallised on addition of ethanol to give aziridine 13 as a colourless solid ($0.1 \mathrm{~g}, 70 \%$) mp $88-89^{\circ} \mathrm{C}$ (from ethanol) (Found: $\mathrm{M}^{+} 315.158 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires M $315.158) ; \delta_{\mathrm{H}} 1.42\left(\mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.87(\mathrm{dd}, J 5.0$ and 1.3, azir. H-3 trans to Q), 3.09 (q, $J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.26 (dd, $J 7.5$ and 1.3 , azir. $\mathrm{H}-3$ cis to Q), 3.51 (dd, $J 7.5$ and 5.0 azir. $\mathrm{H}-2), 7.37-7.72[\mathrm{~m}, 6-\mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}(\mathrm{Q})]$ and 8.15 [ddd, $J 7.2,1.3$ and $0.6,5-\mathrm{H}(\mathrm{Q})] ; v_{\text {max }} / \mathrm{cm}^{-1} 1725 \mathrm{~s}$, 1670 s and $1595 \mathrm{~m} ; \mathrm{m} / \mathrm{z}(\%)$ $315\left(\mathrm{M}^{+}, 33\right), 259$ (100), 175 (23), 174 (42), 173 (32), 131 (90) and 130 (48).

Aziridination of tert-butyl acrylate using \mathbf{Q}^{3} NHOAc 10

The general procedure 1 was followed using $9(0.1 \mathrm{~g}, 0.49$ mmol), LTA ($0.24 \mathrm{~g}, 0.54 \mathrm{mmol}$) and tert-butyl acrylate (0.09 g , $0.74 \mathrm{mmol})$ in dichloromethane ($2 \mathrm{~cm}^{3}$). The crude product crystallised on addition of ethanol to give aziridine $\mathbf{1 4}$ as a colourless solid ($0.12 \mathrm{~g}, 74 \%$) mp 121-123 ${ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 65.6; H, 7.0; N, 12.7. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 65.65; $\mathrm{H}, 7.05 ; \mathrm{N}, 12.75 \%)$; $\delta_{\mathrm{H}} 1.47\left(\mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.60\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right)$, $2.88\left[\mathrm{~s}, 5-\mathrm{CH}_{3}(\mathrm{Q})\right], 2.97$ (dd, $J 4.7$ and 1.3 , azir. H-3 trans to Q), $3.11\left(\mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.21$ (dd, $J 7.5$ and 1.3 , azir. H-3 cis to Q), 3.35 (dd, $J .5$ and 4.7 azir. H-2), $7.22[\mathrm{~d}, J 7.2,6-\mathrm{H}(\mathrm{Q})]$ and
$7.56[\mathrm{~m}, 7-\mathrm{H}$ and $8-\mathrm{H}(\mathrm{Q})] ; v_{\max } / \mathrm{cm}^{-1} 1735 \mathrm{~s}, 1675 \mathrm{~s}$ and 1595 m ; $m / z(\%) 329\left(\mathrm{M}^{+}, 22\right), 273(64), 188(24)$ and 145 (100).

Preparation of 3-amino-2-trifluoromethyl-5-methylquinazolin-4(3H)-one 19

To a suspension of 6-methylanthranilic acid ($10.3 \mathrm{~g}, 68 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(200 \mathrm{~cm}^{3}\right)$ was added trifluoroacetic anhydride (43 g , 205 mmol) dropwise with stirring. The mixture was heated under reflux for 1 h , then cooled and the excess trifluoroacetic anhydride removed under reduced pressure to give a yellow solid. 2-Trifluoromethyl-5-methyl-4H-3,1-benz[d]oxazin-4-one was obtained as a colourless solid ($13.4 \mathrm{~g}, 86 \%$) mp $86-88^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 52.2; H, 2.7; N, 6.05. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~F}_{3}$ requires C, $52.4 ; \mathrm{H}, 2.65 ; \mathrm{N}, 6.1 \%$); $\delta_{\mathrm{H}} 2.83$ (s, $5-\mathrm{CH}_{3}$), 7.48 (d, $\left.J 7.9,6-\mathrm{H}\right), 7.60(\mathrm{~d}, J 7.5,8-\mathrm{H})$ and 7.76 (app. t, $J \sim 7.5,7-\mathrm{H}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1780 \mathrm{~s}, 1680 \mathrm{~m}$ and $1600 \mathrm{~m} ; \mathrm{m} / \mathrm{z}(\%) 229$ ($\mathrm{M}^{+}, 32$), 160 (100) and 104 (38). 2-Trifluoromethyl-5-methyl$4 H$-3,1-benz[d]oxazin-4-one ($9.5 \mathrm{~g}, 41.5 \mathrm{mmol}$) and hydrazine hydrate ($12.3 \mathrm{~g}, 246 \mathrm{mmol}$) were stirred for 1 h at room temperature in ethanol $\left(50 \mathrm{~cm}^{3}\right)$. The bulk of the ethanol was removed under reduced pressure and the residue dissolved in ethyl acetate $\left(100 \mathrm{~cm}^{3}\right)$ which was washed successively with hydrochloric acid ($2 \mathrm{M}, 100 \mathrm{~cm}^{3}$) and brine $\left(100 \mathrm{~cm}^{3}\right)$, dried with magnesium sulfate and evaporated to give 3-amino-2-trifluoromethyl-quinazolin- $4(3 H)$-one 19 as colourless crystals ($6.4 \mathrm{~g}, 63 \%$) mp $154-156^{\circ} \mathrm{C}$ (from ethanol) (Found: C, $49.55 ; \mathrm{H}, 3.4 ; \mathrm{N}$, 17.1. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{OF}_{3}$ requires C, 49.4; $\left.\mathrm{H}, 3.3 ; \mathrm{N}, 17.3 \%\right) ; \delta_{\mathrm{H}} 2.83$ [s, 5-CH3 (Q)], 4.83 (s, NH_{2}) and $7.55-7.11$ [m, H-6, H-7 and H-8 (Q)]; $v_{\text {max }} / \mathrm{cm}^{-1} 3320 \mathrm{w}, 1680 \mathrm{~s}, 1640 \mathrm{~s}$ and $1600 \mathrm{~m} ; \mathrm{m} / \mathrm{z}(\%) 243$ $\left(\mathrm{M}^{+}, 100\right), 227(32), 214$ (61) and 144 (38).

Aziridination of methyl acrylate using Q 4 NHOAc 20

The general procedure 1 was followed using $18(0.1 \mathrm{~g}, 0.87$ $\mathrm{mmol})$, LTA ($0.43 \mathrm{~g}, 0.96 \mathrm{mmol}$) and methyl acrylate (0.15 g , 1.74 mmol) in dichloromethane ($3 \mathrm{~cm}^{3}$) to give aziridine 23 which crystallised on addition of ethanol as a colourless solid $(0.15 \mathrm{~g}, 56 \%) \mathrm{mp} 105-107^{\circ} \mathrm{C}$ (from ethanol) (Found: M^{+} 313.067. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $M 313.067$); $\delta_{\mathrm{H}} 2.63$ (d, $J 4.4$, azir. H-3 trans to Q), 3.74 (s, OMe), 3.93 (d, J7.2, azir. H-3 cis to Q), 4.26 (dd, $J 4.4$ and 7.2 azir. H-2), $7.81-7.52[\mathrm{~m}, 6-\mathrm{H}, 7-\mathrm{H}$, $8-\mathrm{H}(\mathrm{Q})]$ and $8.13[\mathrm{dd}, J 7.9$ and $1,5-\mathrm{H}(\mathrm{Q})] ; v_{\text {max }} / \mathrm{cm}^{-1} 1750 \mathrm{~s}$, 1690s and $1605 \mathrm{~m} ; \mathrm{m} / \mathrm{z}(\%) 313\left(\mathrm{M}^{+}, 62\right), 214$ (100), 171 (27), 145 (46), 104 (88), 90 (39), 76 (51) and 55 (27).

Aziridination of methyl acrylate using Q 5 NHOAc 21

The general procedure 1 was followed using $19(0.2 \mathrm{~g}, 0.87$ $\mathrm{mmol})$, LTA ($0.43 \mathrm{~g}, 0.96 \mathrm{mmol}$) and methyl acrylate (0.15 g , 1.74 mmol) in dichloromethane ($3 \mathrm{~cm}^{3}$) to afford aziridine $\mathbf{2 4}$ which crystallised on addition of ethanol as a colourless solid ($0.16 \mathrm{~g}, 58 \%$) mp 130-132 ${ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 51.45; $\mathrm{H}, 3.75 ; \mathrm{N}, 12.75 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{3}$ requires C, $51.4 ; \mathrm{H}, 3.7 ; \mathrm{N}$, 12.85%); $\delta_{\mathrm{H}} 2.52$ (d, $J 4.4$, azir. H-3 trans to Q), 2.64 (s, $5-\mathrm{CH}_{3}$), 3.64 (s, $\mathrm{OC} H_{3}$), 3.74 (d, $J 7.2$, azir. H-3 cis to Q), 4.08 (dd, $J 7.2$ and 4.4, azir. $\mathrm{H}-2$) and $7.16-7.60[\mathrm{~m}, 6-\mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}(\mathrm{Q})] ; v_{\text {max }} /$ $\mathrm{cm}^{-1} 1750 \mathrm{~s}, 1690 \mathrm{~s}$ and $1605 \mathrm{~m} ; \mathrm{m} / \mathrm{z}(\%) 355\left(\mathrm{M}^{+}, 8\right), 299(45)$, 214 (56), 84 (100) and 57 (40).

Aziridination of tert-butyl acrylate using Q 4 NHOAc 20

The general procedure 1 was followed using $18(0.2 \mathrm{~g}, 0.87$ mmol), LTA ($0.43 \mathrm{~g}, 0.96 \mathrm{mmol}$) and tert-butyl acrylate (0.22 g , 1.74 mmol) in dichloromethane ($3 \mathrm{~cm}^{3}$) to afford aziridine $\mathbf{2 5}$ which crystallised on addition of ethanol to give a colourless solid ($0.2 \mathrm{~g}, 63 \%$) mp 118-120 ${ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, $54.0 ; \mathrm{H}, 4.55 ; \mathrm{N}, 11.8 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{3}$ requires C, $54.1 ; \mathrm{H}, 4.55$; $\mathrm{N}, 11.85 \%) ; \delta_{\mathrm{H}} 1.50\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.60(\mathrm{~d}, J 4.7$, azir. H-3 trans to Q), 3.99 (d, $J 7.2$, azir. H-3 cis to Q), 4.20 (dd, $J .2$ and 4.4 , azir. $\mathrm{H}-2), 7.56-7.83[\mathrm{~m}, 6-\mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}(\mathrm{Q})]$ and $8.20[\mathrm{~d}, J 8.2,5-\mathrm{H}$
(Q)]; $v_{\max } / \mathrm{cm}^{-1} 1735 \mathrm{~s}, 1690 \mathrm{~s}$ and $1605 \mathrm{~m} ; m / z(\%) 355\left(\mathrm{M}^{+}, 8\right)$, 299 (45), 214 (56), 84 (100) and 57 (40).

Aziridination of tert-butyl acrylate using \mathbf{Q}^{5} NHOAc 21

The general procedure 1 was followed using $19(0.1 \mathrm{~g}, 0.41$ $\mathrm{mmol})$, LTA ($0.2 \mathrm{~g}, 0.45 \mathrm{mmol}$) and tert-butyl acrylate $(0.11 \mathrm{~g}$, 0.82 mmol) in dichloromethane ($2 \mathrm{~cm}^{3}$) to afford aziridine 26 which crystallised on addition of ethanol as a colourless solid ($0.09 \mathrm{~g}, 57 \%$) mp $164-165^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 55.2 ; $\mathrm{H}, 4.95 ; \mathrm{N}, 11.35 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{3}$ requires C, 55.3; H, 4.9; N, 11.35%); $\delta_{\mathrm{H}} 1.49\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.58$ (d, $J 4.4$, azir. H-3 trans to Q), $2.79\left(\mathrm{~s}, 5-\mathrm{CH}_{3}\right), 3.92$ (d, $J 7.2$, azir. H-3 cis to Q), 4.16 (dd, $J 7.2$ and 4.4, azir. H-2) and 7.26-7.77 [m, 6-H, 7-H, 8-H (Q)]; $v_{\max } / \mathrm{cm}^{-1} 1745 \mathrm{~s}, 1690 \mathrm{~s}$ and 1605 m ; m/z (\%) $369\left(\mathrm{M}^{+}, 24\right), 313$ (100), 296 (30), 229 (20), 228 (74), 144 (39), 118 (96), 90 (30), 89 (22), 69 (21), 57 (93) and 55 (54).

Preparation of 3-amino-2-(1,1-dichloroethyl)-5-methylquin-azolin-4(3H)-one 28

To a solution of 6 -methylanthranilic acid ($3 \mathrm{~g}, 20 \mathrm{mmol}$) in pyridine ($30 \mathrm{~cm}^{3}$) was added 2,2-dichloropropanoyl chloride ($3.2 \mathrm{~g}, 20 \mathrm{mmol}$) dropwise with stirring. The mixture was stirred for a further 16 h at room temperature, then ethyl acetate was added $\left(50 \mathrm{~cm}^{3}\right)$, the solution washed successively with hydrochloric acid ($2 \mathrm{M}, 3 \times 50 \mathrm{~cm}^{3}$), brine ($50 \mathrm{~cm}^{3}$) and water (50 cm^{3}), the organic layer was dried with magnesium sulfate and then evaporated under reduced pressure to give 2-(1,1-dichloro-ethyl)-5-methyl-4H-3,1-benz[d]oxazin-4-one as a brown solid $(2.5 \mathrm{~g}, 49 \%) . \delta_{\mathrm{H}} 2.54$ and $2.82\left(2 \times \mathrm{s}, 5-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CCl}_{2}\right), 7.38$ (d, $J .5,6-\mathrm{H}), 7.52(\mathrm{~d}, J 7.9,8-\mathrm{H})$ and $7.9(\mathrm{dd}, J 7.5$ and 7.9 , $7-\mathrm{H})$; $v_{\text {max }} / \mathrm{cm}^{-1} 1770 \mathrm{~s}, 1650 \mathrm{~s}$ and 1600 m . 2-(1,1-Dichloroethyl)-5-methyl-4H-3,1-benz[d]oxazin-4-one ($2.3 \mathrm{~g}, 8.5 \mathrm{mmol}$) and hydrazine hydrate ($0.5 \mathrm{~g}, 10 \mathrm{mmol}$) were heated under reflux for 3 h in ethanol $\left(5 \mathrm{~cm}^{3}\right)$. The bulk of the ethanol was removed under reduced pressure and the residue dissolved in dichloromethane ($30 \mathrm{~cm}^{3}$) which was washed with water $\left(30 \mathrm{~cm}^{3}\right)$ and brine ($30 \mathrm{~cm}^{3}$), dried with magnesium sulfate and evaporated to give N -2,2-dichloropropanoyl-6-methylanthranilic acid hydrazide as a brown solid ($1 \mathrm{~g}, 40 \%$). $\delta_{\mathrm{H}} 2.27$ and $2.3(2 \times \mathrm{s}$, 5-CH H_{3} and $\mathrm{CH}_{3} \mathrm{CCl}_{2}$), 4.05 (s, br, NHNH H_{2}), 6.98 (d, J7.9, 6-H), $7.22(\mathrm{dd}, J 8.2$ and $7.9,7-\mathrm{H}), 7.34\left(\mathrm{~s}, \mathrm{~N} H \mathrm{NH}_{2}\right), 7.74(\mathrm{~d}, J 8.2$, $8-\mathrm{H}$) and 9.5 (s, NH). The N-2,2-dichloropropanoyl-6-methylanthranilic acid hydrazide ($1 \mathrm{~g}, 3.4 \mathrm{mmol}$) was placed in a Young's tube with ethanol ($3 \mathrm{~cm}^{3}$) and heated at $150^{\circ} \mathrm{C}$ for 16 h . Excess ethanol was removed, the residue dissolved in dichloromethane ($30 \mathrm{~cm}^{3}$) which was then washed successively with water $\left(30 \mathrm{~cm}^{3}\right)$ and brine $\left(30 \mathrm{~cm}^{3}\right)$, dried with magnesium sulfate and evaporated to give 3-amino-2-(1,1-dichloroethyl)-5methylquinazolinone 28 as a colourless solid ($0.8 \mathrm{~g}, 82 \%$) mp $173-175^{\circ} \mathrm{C}$ (from ethanol) (Found: $\mathrm{M}^{+} 271.027 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OCl}_{2}$ requires M 271.027); $\delta_{\mathrm{H}} 2.67$ and $2.9\left[2 \times \mathrm{s}, 5-\mathrm{CH}_{3}(\mathrm{Q})\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CCl}_{2}\right], 5.15\left(\mathrm{~s}, \mathrm{NH}_{2}\right), 7.31[\mathrm{~d}, \mathrm{~J} 6.9,6-\mathrm{H},(\mathrm{Q})]$ and $7.54-7.65$ [m, H-7 and H-8 (Q)]; $v_{\text {max }} / \mathrm{cm}^{-1} 3320 \mathrm{w}, 1675 \mathrm{~s}$ and $1600 \mathrm{~m} ; \mathrm{m} / \mathrm{z}$ (\%) 271 ($\mathrm{M}^{+}, 100$), 238 (23), 236 (74), 219 (51), 208 (26), 207 (30), 206 (62), 183 (20), 146 (21), 144 (26), 89 (24) and 77 (21).

Aziridination of methyl acrylate using \mathbf{Q}^{6} NHOAc 29

General procedure 1 was followed using $27(0.1 \mathrm{~g}, 0.39 \mathrm{mmol})$, LTA ($0.19 \mathrm{~g}, 0.43 \mathrm{mmol}$) and methyl acrylate $(0.07 \mathrm{~g}, 0.77$ mmol) in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$. The crude product was purified by chromatography over silica eluting with light petroleum-ethyl acetate ($6: 1$) and aziridine $31\left(R_{\mathrm{f}} 0.29\right)$ was obtained as a colourless oil $(0.04 \mathrm{~g}, 27 \%)$ (Found: $\mathrm{M}^{+} 341.033$. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}_{2}$ requires $M 341.033$); $\delta_{\mathrm{H}} 2.53$ (d, J 3.8, azir. H-3 trans to Q), $2.55\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CCl}_{2}\right), 3.65\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 4.07(\mathrm{~d}, J 6.6$, azir. H-3 cis to Q), 4.58 (dd, $J 6.6$ and 3.8 azir. H-2), 7.42 [ddd, $J 8.2,6.9$ and $1.3,6-\mathrm{H}(\mathrm{Q})], 7.64[\mathrm{~m}, 7-\mathrm{H}$ and $8-\mathrm{H}(\mathrm{Q})]$ and 8.05 [dd, $J 8.2$ and $1.3,5-\mathrm{H}(\mathrm{Q})] ; v_{\text {max }} / \mathrm{cm}^{-1} 1770 \mathrm{~s}, 1680 \mathrm{~s}$ and $1590 \mathrm{~s} ;$ $m / z(\%) 341\left(\mathrm{M}^{+}, 6\right), 308(34), 306$ (100) and 207 (20).

Aziridination of methyl acrylate using $\mathbf{Q}^{\mathbf{7}} \mathbf{N H O A c} 30$

General procedure 1 was followed using $28(0.07 \mathrm{~g}, 0.27 \mathrm{mmol})$, LTA ($0.13 \mathrm{~g}, 0.3 \mathrm{mmol}$) and methyl acrylate ($0.05 \mathrm{~g}, 0.55 \mathrm{mmol}$) in dichloromethane ($2 \mathrm{~cm}^{3}$). The crude product was purified by chromatography over silica eluting with light petroleum-ethyl acetate (5:1) and aziridine $32\left(R_{\mathrm{f}} 0.35\right)$ was obtained as a colourless solid, $\mathrm{mp} 161-163{ }^{\circ} \mathrm{C}(0.03 \mathrm{~g}, 31 \%)$ (from ethanol) (Found: M^{+}355.049. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}_{2}$ requires M 355.049); $\delta_{\mathrm{H}} 2.53$ (d, J3.8, azir. H-3 trans to Q), 2.56 ($\mathrm{s}, \mathrm{CH}_{3} \mathrm{CCl}_{2}$), $2.70[\mathrm{~s}$, 5-CH3 (Q)], $3.68\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 4.05(\mathrm{~d}, J 6.6$, azir. H-3 cis to Q), 4.58 (dd, $J 6.6$ and 3.8 azir. H-2) and $7.16-7.54[\mathrm{~m}, 6-\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H}(\mathrm{Q})] ; v_{\text {max }} / \mathrm{cm}^{-1} 1770 \mathrm{~s}, 1665 \mathrm{~s}$ and $1600 \mathrm{~m} ; m / z(\%) 355$ $\left(\mathrm{M}^{+}, 13\right), 322(30), 320(88), 208$ (32) and 206 (100).

Aziridination of tert-butyl acrylate using Q 6 NHOAc 29

General procedure 1 was followed using $27(0.1 \mathrm{~g}, 0.41 \mathrm{mmol})$, LTA ($0.2 \mathrm{~g}, 0.45 \mathrm{mmol}$) and tert-butyl acrylate $(0.1 \mathrm{~g}, 0.82$ $\mathrm{mmol})$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$. The crude product was purified by chromatography over silica eluting with light petroleum-ethyl acetate ($6: 1$) and aziridine 33 ($R_{\mathrm{f}} 0.32$) was obtained as a colourless solid ($0.04 \mathrm{~g}, 25 \%$) (Found: M^{+} 383.080. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}_{2}$ requires $M 383.080$); $\delta_{\mathrm{H}} 1.39\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right)$, 2.47 (d, J4.1, azir. H-3 trans to Q), $2.59\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CCl}_{2}\right), 3.99$ (d, $J 6.6$, azir. H-3 cis to Q), 4.49 (dd, $J 6.6$ and 4.1 azir. H-2), 7.43 [ddd, $J 1.3,6.9$ and $8.2,6-\mathrm{H}(\mathrm{Q})], 7.63[\mathrm{~m}, 7-\mathrm{H}$ and $8-\mathrm{H}(\mathrm{Q})]$ and 8.07 [dd, $J 1.0$ and $8.2,8-\mathrm{H}(\mathrm{Q})] ; v_{\text {max }} / \mathrm{cm}^{-1} 1745 \mathrm{~s}, 1660 \mathrm{~s}$ and $1595 \mathrm{~s} ; \mathrm{m} / \mathrm{z}(\%) 383$ ($\mathrm{M}^{+}, 9$), 294 (34), 292 (100), 207 (45), 146 (29) and 57 (31).

Aziridination of tert-butyl acrylate using $\mathbf{Q}^{\mathbf{7}}{ }^{\mathbf{N} H O A c} 30$

General procedure 1 was followed using $28(0.06 \mathrm{~g}, 0.22 \mathrm{mmol})$, LTA ($0.11 \mathrm{~g}, 0.24 \mathrm{mmol}$) and tert-butyl acrylate $(0.06 \mathrm{~g}, 0.44$ $\mathrm{mmol})$ in dichloromethane $\left(1 \mathrm{~cm}^{3}\right)$. The crude product was purified by chromatography over silica eluting with light petroleum-ethyl acetate ($6: 1$) and aziridine 34 ($R_{\mathrm{f}} 0.34$) was obtained as a colourless oil ($0.02 \mathrm{~g}, 20 \%$) (Found: M^{+}397.096. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}_{2}$ requires $M 397.096$); $\delta_{\mathrm{H}} 1.40\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.43$ (d, $J 3.8$, azir. $\mathrm{H}-3$ trans to Q), 2.56 and $2.7\left[2 \times \mathrm{s}, 5-\mathrm{CH}_{3}(\mathrm{Q})\right.$ and $\mathrm{CH}_{3} \mathrm{CCl}_{2}$], 3.97 (dd, $J 6.6$ and 0.6 , azir. H-3 cis to Q), 4.47 (dd, $J 6.6$ and 3.8 , azir, H-2), $7.15-7.53[\mathrm{~m}, 6-\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H}$ (Q)]; $v_{\text {max }} / \mathrm{cm}^{-1} 1760 \mathrm{~s}, 1665 \mathrm{~s}$ and $1600 \mathrm{~m} ; \mathrm{m} / \mathrm{z}(\%) 397\left(\mathrm{M}^{+}, 11\right)$, 308 (26), 221 (33), 208 (32) and 206 (100).

Competitive aziridination of methyl acrylate using 2 and 10 with and without addition of TFA

General procedure 1 was followed but using a mixture of 3-aminoquinazolinones $\mathbf{1}(0.1 \mathrm{~g}, 0.53 \mathrm{mmol})$ and $9(0.11 \mathrm{~g}, 0.53$ mmol), LTA ($0.52 \mathrm{~g}, 1.16 \mathrm{mmol}$) and methyl acrylate (0.045 g , 0.53 mmol) in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$. Examination of the NMR spectrum of the crude product mixture after work-up showed the presence of aziridines $\mathbf{1 1}$ and $\mathbf{1 2}$ in a 1.4:1 ratio from the integration of signals at $\delta 3.58$ and 3.41 ppm . When the above reaction was carried out under the same conditions but with addition of TFA $(0.36 \mathrm{~g}, 3.18 \mathrm{mmol})$ (see general procedure 2) aziridines $\mathbf{1 0}$ and $\mathbf{1 1}$ were present in a $1: 1$ ratio in the crude reaction product determined from the integration of the same signals in the NMR spectrum as indicated above.

Competitive aziridination of tert-butyl acrylate using 2 and 10 with and without addition of TFA

The same procedure described above was followed using the same quantities of 3 -aminoquinazolinones $\mathbf{1}$ and $\mathbf{9}$, LTA and dichloromethane, but using tert-butyl acrylate $(0.06 \mathrm{~g}, 0.53$ mmol) instead of methyl acrylate. The NMR spectrum of the crude reaction product showed the presence of aziridine 13 and quinazolin- $4(3 H)$-one 15 in a $1: 1.7$ ratio from integration comparison of signals at $\delta 3.51$ and 2.89 ppm . A pure sample of 5-methylquinazolin-4(3H)-one $\mathbf{1 5}$ was isolated by chroma-
tography over silica gel using light petroleum-ethyl acetate ($6: 1$) as eluent as a colourless solid ($0.037 \mathrm{~g}, 40 \%$) (sublimed above $180^{\circ} \mathrm{C}$) (from light petroleum) (Found: C, 69.7; H, 6.4; $\mathrm{N}, 14.65 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 70.2; H, 6.4; $\mathrm{N}, 14.9 \%$); $\delta_{\mathrm{H}} 1.44\left(\mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.78\left(\mathrm{q}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.89[\mathrm{~s}$, 5-CH3 $(\mathrm{Q})]$ and $7.19-7.8[\mathrm{~m}, 6-\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H}(\mathrm{Q})], 11.2(\mathrm{~s}$, $\mathrm{NH}) ; v_{\max } / \mathrm{cm}^{-1} 3000 \mathrm{~s}, 1665 \mathrm{~s}$ and $1600 \mathrm{~m} ; m / z(\%) 189\left(\mathrm{MH}^{+}\right.$, 100), 188 (32) and 176 (43).

When this reaction was repeated under the same conditions, but with addition of TFA ($361 \mathrm{mg}, 3.18 \mathrm{mmol}$) (general procedure 2), the NMR spectrum of the crude reaction product showed the presence of aziridines $\mathbf{1 3}$ and $\mathbf{1 4}$ in a $1: 1$ ratio from the integration of signals at $\delta 3.51$ and 3.35 ppm , respectively.

Competitive aziridination of methyl acrylate and of tert-butyl

 acrylate using 20 and 21General procedure 1 was followed using 3-aminoquinazolin$4(3 \mathrm{H})$-ones $18(0.1 \mathrm{~g}, 0.46 \mathrm{mmol})$ and $19(0.106 \mathrm{~g}, 0.46 \mathrm{mmol})$, LTA $(0.449 \mathrm{~g}, 0.506 \mathrm{mmol})$ and methyl acrylate $(0.049 \mathrm{~g}, 0.46$ mmol) in dichloromethane ($4 \mathrm{~cm}^{3}$). NMR spectroscopic examination of the crude product mixture showed that a $1: 1$ ratio of 23 and $\mathbf{2 4}$ was present from comparison of the signals at $\delta 4.26$ and 4.08 and at $\delta 3.93$ and 3.74 ppm .

Identical quantities of 3 -aminoquinazolin- $4(3 \mathrm{H})$-ones $\mathbf{1 8}$ and 19, LTA and dichloromethane were used for the aziridination of tert-butyl acrylate ($0.06 \mathrm{~g}, 0.46 \mathrm{mmol}$) and yielded aziridines $\mathbf{2 5}$ and 26. NMR spectroscopic examination of the crude product mixture confirmed that a $1: 1$ ratio of $\mathbf{2 5}$ and $\mathbf{2 6}$ was present from comparison of signals at $\delta 4.20$ and 4.16 and at $\delta 3.99$ and 3.92 ppm .

Competitive aziridination of methyl acrylate and of tert-butyl acrylate using 29 and 30

The general procedure 1 was followed using 3 -aminoquin-azolin- $4(3 \mathrm{H})$-ones $27(0.075 \mathrm{~g}, 0.30 \mathrm{mmol})$ and $28(0.079 \mathrm{~g}, 0.30$ mmol), LTA $(0.145 \mathrm{~g}, 0.33 \mathrm{mmol})$ and methyl acrylate $(0.026 \mathrm{~g}$, 0.30 mmol) in dichloromethane ($2 \mathrm{~cm}^{3}$). NMR spectroscopic examination of the crude product mixture showed that a 1.1:1 ratio of $\mathbf{3 1}$ and $\mathbf{3 2}$ was present from comparison of signals at $\delta 4.07$ and 4.05 ppm (from cutting and weighing the (overlapping) peaks).

The 3-aminoquinazolin-4(3 H)-ones $27(0.1 \mathrm{~g}, 0.387 \mathrm{mmol}$) and $28(0.106 \mathrm{~g}, 0.387 \mathrm{mmol})$, LTA $(0.361 \mathrm{~g}, 0.814 \mathrm{mmol})$ in dichloromethane $\left(3 \mathrm{~cm}^{3}\right)$ were also used for the aziridination of tert-butyl acrylate ($0.05 \mathrm{~g}, 0.387 \mathrm{mmol}$) and yielded aziridines 33 and 34. NMR (400 MHz) spectroscopic examination of the crude product mixture confirmed that a $3: 2$ ratio of $\mathbf{3 3}$ and $\mathbf{3 4}$ was present from comparison of signals at $\delta 3.99$ and 3.97 ppm .

Acknowledgements

We thank the University of Kafkas (Turkey) for support (to S. U.).

References

1 R. S. Atkinson, Tetrahedron, 1999, 55, 1519; R. S. Atkinson, M. J. Grimshire and B. J. Kelly, Tetrahedron, 1989, 45, 2875.

2 R. S. Atkinson and B. J. Kelly, J. Chem. Soc., Perkin Trans. 1, 1989, 1627.

3 R. S. Atkinson and G. Tughan, J. Chem. Soc., Perkin Trans. 1, 1987, 2803.

4 R. S. Atkinson and B. J. Kelly, J. Chem. Soc., Perkin Trans. 1, 1989, 1515.

5 R. S. Atkinson and P. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1996, 1951.
6 R. S. Atkinson, M. P. Coogan and C. L. Cornell, J. Chem. Soc., Perkin Trans. 1, 1996, 157.
7 R. S. Atkinson, E. Barker and S. Ulukanli, J. Chem. Soc., Perkin Trans. 1, 1998, 584.

